StereoVidComfort/StereoVidComfort.py

228 lines
8.4 KiB
Python
Raw Normal View History

2019-04-29 09:50:26 +08:00
import ffmpeg
import numpy as np
import matplotlib
import cv2
import os
2019-04-29 14:10:03 +08:00
import sys
2019-04-29 09:50:26 +08:00
from matplotlib import pyplot as plt
2019-05-07 18:29:36 +08:00
from scipy import stats
2019-04-29 09:50:26 +08:00
2019-05-06 16:53:20 +08:00
2019-05-04 15:58:25 +08:00
'''
TODO:
0:读取视频
1:获取视差
2:获取运动矢量
2019-05-11 16:08:21 +08:00
3:确定舒适度
4:加舒适度水印 做吗)
5:提高舒适度
2019-05-04 15:58:25 +08:00
...
'''
2019-04-29 18:04:53 +08:00
2019-05-07 11:17:35 +08:00
# 打开视频文件
2019-05-02 14:35:40 +08:00
def openVid():
2019-05-07 18:29:36 +08:00
fileName = input("video path: ./vid/")
fileName = "./vid/" + fileName
2019-05-02 14:35:40 +08:00
while not os.path.isfile(fileName):
2019-05-07 18:29:36 +08:00
if os.path.isfile(fileName + ".mkv"):
fileName = fileName + ".mkv"
break
2019-05-02 14:35:40 +08:00
print("file doesn't exist!")
2019-05-07 18:29:36 +08:00
fileName = input("video path: ./vid/")
fileName = "./vid/" + fileName
2019-05-02 14:35:40 +08:00
cap = cv2.VideoCapture(fileName)
2019-05-06 16:53:20 +08:00
if cap.isOpened():
2019-05-02 14:35:40 +08:00
return cap
2019-05-06 16:53:20 +08:00
else:
print("cannot open video.")
sys.exit()
2019-05-02 14:35:40 +08:00
2019-05-07 11:17:35 +08:00
# 获取视频总帧数
2019-05-02 14:35:40 +08:00
def getFrameCount(cap):
2019-05-06 16:53:20 +08:00
if cap.isOpened():
2019-05-02 14:35:40 +08:00
return cap.get(cv2.CAP_PROP_FRAME_COUNT)
2019-05-06 16:53:20 +08:00
else:
print("cannot open video.")
sys.exit()
2019-05-02 14:35:40 +08:00
2019-05-07 11:17:35 +08:00
# 获取帧速率
2019-05-02 14:35:40 +08:00
def getFrameRate(cap):
2019-05-06 16:53:20 +08:00
if cap.isOpened():
2019-05-02 14:35:40 +08:00
return cap.get(cv2.CAP_PROP_FPS)
2019-05-06 16:53:20 +08:00
else:
print("cannot open video.")
sys.exit()
2019-05-02 14:35:40 +08:00
2019-05-07 11:17:35 +08:00
# 给出左右画面,计算景深
def getDepthMap(imgL, imgR):
# stereo = cv2.StereoBM_create(numDisparity = 32, blockSize = 3) # 速度快,准确性较低,单通道
stereo = cv2.StereoSGBM_create(minDisparity = -16, numDisparities = 48, blockSize = 5, P1=320, P2=1280) # 速度稍慢,准确性较高,多通道
2019-05-07 11:17:35 +08:00
return stereo.compute(imgL, imgR)
# 给出前后两帧,计算帧间运动矢量
def getMotionVector(prvs, next):
hsv = np.zeros_like(imgR) # 将运动矢量按hsv显示以色调h表示运动方向以明度v表示运动位移
hsv[..., 1] = 255 # 饱和度置为最高
# 转为灰度以计算光流
prvs = cv2.cvtColor(prvs, cv2.COLOR_BGR2GRAY)
next = cv2.cvtColor(next, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(
prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0) # 计算两帧间的光流,即运动矢量的直角坐标表示
mag, ang = cv2.cartToPolar(
flow[..., 0], flow[..., 1]) # 运动矢量的直角坐标表示转换为极坐标表示
hsv[..., 0] = ang*180/np.pi/2 # 角度对应色调
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) # 位移量对应明度
return hsv
2019-05-02 14:35:40 +08:00
if __name__ == "__main__":
cap = openVid()
2019-05-06 16:53:20 +08:00
isDemo = int(input("is Demo(0/1)?"))
2019-05-02 14:35:40 +08:00
frameRate = getFrameRate(cap)
frameCount = getFrameCount(cap)
2019-05-07 18:29:36 +08:00
framesCalculated = 0
framesComfort = []
2019-05-04 15:58:25 +08:00
isSuccess, img = cap.read()
if not isSuccess:
print("video read error.")
sys.exit()
2019-05-07 11:17:35 +08:00
# 分割左右画面
2019-05-04 15:58:25 +08:00
imgL = np.split(img, 2, 1)[0]
imgR = np.split(img, 2, 1)[1]
2019-05-07 11:17:35 +08:00
prvs = imgR # 上一帧的右画面,用于运动矢量计算
2019-05-04 15:58:25 +08:00
# 每秒取5帧进行计算
2019-05-11 20:00:29 +08:00
for frameID in range(round(0), round(frameCount), round(frameRate/5)):
if frameID >= frameCount - 3:
frameID = frameCount - 3
2019-05-02 14:35:40 +08:00
cap.set(cv2.CAP_PROP_POS_FRAMES, frameID)
isSuccess, img = cap.read()
2019-05-04 15:58:25 +08:00
if not isSuccess:
print("video read error.")
2019-05-11 20:00:29 +08:00
break
2019-05-04 15:58:25 +08:00
2019-05-07 11:17:35 +08:00
# 分割左右画面
2019-05-04 15:58:25 +08:00
imgL = np.split(img, 2, 1)[0]
imgR = np.split(img, 2, 1)[1]
2019-05-07 11:17:35 +08:00
next = imgR # 当前帧的右画面,用于运动矢量计算
hsv = getMotionVector(prvs, next)
2019-05-15 14:19:34 +08:00
hsv_bak = hsv.copy()
# 计算深度图,disparity越大景深越小物体越近
2019-05-07 11:17:35 +08:00
disparity = getDepthMap(imgL, imgR)
2019-05-07 18:29:36 +08:00
framesCalculated += 1
comfort = 1
2019-05-07 18:29:36 +08:00
2019-05-07 11:17:35 +08:00
# 显示计算结果
print("time: ", round(frameID/frameRate, 2))
# 景深的平均值,偏大则意味着负视差(出屏感),可能不适
AVG_depth = round(np.mean(disparity), 2)
2019-05-11 20:00:29 +08:00
print("AVG depth: ", AVG_depth) # 大于-10时开始不适权重为0.15
if AVG_depth > -10:
comfort -= 0.15
# 运动矢量大小的平均值,可判断画面大致上是否稳定
AVG_motionMag = round(np.mean(hsv[..., 2]), 2)
2019-05-11 20:00:29 +08:00
print("AVG motionMag: ", AVG_motionMag) # 大于20时略不适权重0.1
if AVG_motionMag > 20:
comfort -= 0.1
# 景深的众数,由于景深基本不连续,众数意义不大
# print("Mode depth: ", stats.mode(disparity.reshape(-1))[0][0]) # 无明显阈值
# 运动矢量大小的众数一般为0若较大说明画面中存在较大面积的快速运动可能不适
Mode_motionMag = stats.mode(hsv[..., 2].reshape(-1))[0][0]
2019-05-11 20:00:29 +08:00
print("Mode motionMag: ", Mode_motionMag) # 大于0则不适越大越不适权重0.20到30归一化为0.1到0.15大于60为0.2
if Mode_motionMag > 0:
2019-05-11 20:00:29 +08:00
if Mode_motionMag > 30:
comfort -= 0.2
else:
2019-05-11 20:00:29 +08:00
comfort -= (Mode_motionMag/600 + 0.1)
# 景深的标准差若偏大说明景深范围较大可能不适但同时也是3D感更强的特征
STD_depth = round(np.std(disparity),2)
2019-05-11 20:00:29 +08:00
print("STD depth: ", STD_depth) # 大于130时略不适权重为0.15
if STD_depth > 130:
comfort -= 0.15
# 运动矢量大小的标准差,若偏大说明各部分运动比较不一致,可能需要结合运动矢量的方向作进一步判断,若存在较复杂的运动形式,则可能不适
STD_motionMag = round(np.std(hsv[...,2]),2)
2019-05-11 20:00:29 +08:00
print("STD motionMag: ", STD_motionMag) # 大于20时略不适权重为0.1
if STD_motionMag > 20:
comfort -= 0.1
# 运动矢量方向的标准差,若偏大说明各部分运动比较不一致,可能需要结合运动矢量的大小作进一步判断,若存在较复杂的运动形式,则可能不适
# print("STD motionAng: ", round(np.std(hsv[...,0]),2)) # 无明显阈值
disparity_Positive = disparity.copy()
disparity_Positive[disparity_Positive < 0] = 0
2019-05-11 20:00:29 +08:00
# 负视差的像素的所占比例大于0.25时比较不适权重0.15
PCT_disparity_Positive = np.count_nonzero(disparity_Positive)/disparity_Positive.shape[0]/disparity_Positive.shape[1]
print("close pixels percetage:", round(PCT_disparity_Positive,3))
2019-05-11 20:00:29 +08:00
if PCT_disparity_Positive > 0.25:
comfort -= 0.15
# 存在运动的像素点的视差平均值
movingPixels = hsv[...,2]
movingPixels[movingPixels < 10] = 0 # 小于10的运动认为是静止
movingPixels[movingPixels > 0] = 1
movingDepth = np.multiply(disparity, movingPixels)
AVG_movingDepth = round(np.sum(movingDepth)/np.count_nonzero(movingDepth))
2019-05-11 20:00:29 +08:00
print("AVG movingDepth: ", AVG_movingDepth) # 大于5时不适权重0.15
if AVG_movingDepth > 5:
comfort -= 0.15
framesComfort.append(comfort)
comfort = round(comfort, 3)
2019-05-07 18:29:36 +08:00
2019-05-04 15:58:25 +08:00
print()
print("CurFrameComfort: ", comfort)
print("TotalComfort: ", round(sum(framesComfort)/framesCalculated,2))
print()
2019-05-07 11:17:35 +08:00
# 当为demo模式时显示当前帧画面、运动矢量图和景深图
2019-05-06 16:53:20 +08:00
if isDemo:
2019-05-07 11:17:35 +08:00
# 显示当前帧
2019-05-06 16:53:20 +08:00
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.imshow('img', img)
cv2.waitKey(1)
# cv2.namedWindow("imgL", cv2.WINDOW_NORMAL)
# cv2.imshow('imgL', imgL)
# cv2.namedWindow("imgR", cv2.WINDOW_NORMAL)
# cv2.imshow('imgR', imgR)
2019-05-06 16:53:20 +08:00
2019-05-07 11:17:35 +08:00
# 显示当前帧的运动矢量的hsv表示
2019-05-15 14:19:34 +08:00
bgr = cv2.cvtColor(hsv_bak, cv2.COLOR_HSV2BGR) # hsv转为rgb用于显示
cv2.namedWindow("MotionVector", cv2.WINDOW_NORMAL)
cv2.imshow("MotionVector", bgr)
cv2.waitKey(1)
2019-05-07 11:17:35 +08:00
# 显示当前帧的景深图
2019-05-15 14:19:34 +08:00
plt.title("DepthMap")
plt.imshow(disparity)
# plt.pause(0.1)
# input("press Enter to continue")
2019-05-07 18:29:36 +08:00
# 运动矢量的直方图,方便查看数值
# plt.title("MotionVector")
# plt.imshow(hsv[...,2])
# plt.show()
2019-05-15 14:19:34 +08:00
plt.pause(0.1)
input("press Enter to continue")
2019-05-07 11:17:35 +08:00
prvs = next # 当前帧覆盖上一帧,继续计算
2019-05-11 20:00:29 +08:00
print("TotalFrameCalculated: ", framesCalculated)
print("TotalComfort: ", round(sum(framesComfort)/framesCalculated,2))
print("success")