import ffmpeg import numpy as np import matplotlib import cv2 import os import sys from matplotlib import pyplot as plt from scipy import stats ''' TODO: 0:读取视频 √ 1:获取视差 √ 2:获取运动矢量 √ 3:确定舒适度 4:加舒适度水印 ... ''' # 打开视频文件 def openVid(): fileName = input("video path: ./vid/") fileName = "./vid/" + fileName while not os.path.isfile(fileName): if os.path.isfile(fileName + ".mkv"): fileName = fileName + ".mkv" break print("file doesn't exist!") fileName = input("video path: ./vid/") fileName = "./vid/" + fileName cap = cv2.VideoCapture(fileName) if cap.isOpened(): return cap else: print("cannot open video.") sys.exit() # 获取视频总帧数 def getFrameCount(cap): if cap.isOpened(): return cap.get(cv2.CAP_PROP_FRAME_COUNT) else: print("cannot open video.") sys.exit() # 获取帧速率 def getFrameRate(cap): if cap.isOpened(): return cap.get(cv2.CAP_PROP_FPS) else: print("cannot open video.") sys.exit() # 给出左右画面,计算景深 def getDepthMap(imgL, imgR): stereo = cv2.StereoSGBM_create(numDisparities=32, blockSize=3) return stereo.compute(imgL, imgR) # 给出前后两帧,计算帧间运动矢量 def getMotionVector(prvs, next): hsv = np.zeros_like(imgR) # 将运动矢量按hsv显示,以色调h表示运动方向,以明度v表示运动位移 hsv[..., 1] = 255 # 饱和度置为最高 # 转为灰度以计算光流 prvs = cv2.cvtColor(prvs, cv2.COLOR_BGR2GRAY) next = cv2.cvtColor(next, cv2.COLOR_BGR2GRAY) flow = cv2.calcOpticalFlowFarneback( prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0) # 计算两帧间的光流,即运动矢量的直角坐标表示 mag, ang = cv2.cartToPolar( flow[..., 0], flow[..., 1]) # 运动矢量的直角坐标表示转换为极坐标表示 hsv[..., 0] = ang*180/np.pi/2 # 角度对应色调 hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) # 位移量对应明度 return hsv if __name__ == "__main__": cap = openVid() isDemo = int(input("is Demo(0/1)?")) frameRate = getFrameRate(cap) frameCount = getFrameCount(cap) framesCalculated = 0 isSuccess, img = cap.read() if not isSuccess: print("video read error.") sys.exit() # 分割左右画面 imgL = np.split(img, 2, 1)[0] imgR = np.split(img, 2, 1)[1] prvs = imgR # 上一帧的右画面,用于运动矢量计算 # 每秒取4帧进行计算 for frameID in range(round(cap.get(cv2.CAP_PROP_POS_FRAMES)), round(frameCount), round(frameRate/4)): cap.set(cv2.CAP_PROP_POS_FRAMES, frameID) isSuccess, img = cap.read() if not isSuccess: print("video read error.") sys.exit() # 分割左右画面 imgL = np.split(img, 2, 1)[0] imgR = np.split(img, 2, 1)[1] next = imgR # 当前帧的右画面,用于运动矢量计算 hsv = getMotionVector(prvs, next) # 计算深度图 disparity = getDepthMap(imgL, imgR) framesCalculated += 1 # 显示计算结果 print("time: ", round(frameID/frameRate, 2)) print("AVG depth: ", round(np.mean(disparity), 2)) # 景深的平均值,偏大则意味着负视差,可能不适 print("AVG motion: ", round(np.mean(hsv[..., 2]), 2)) # 运动矢量大小的平均值,可判断画面大致上是否稳定 print("Mode depth: ", stats.mode(disparity.reshape(-1))[0][0]) # 景深的众数,由于景深基本不连续,众数意义不大 print("Mode motion: ", stats.mode(hsv[..., 2].reshape(-1))[0][0]) # 运动矢量大小的众数,一般为0,若较大,说明画面中存在较大面积的快速运动,可能不适 print("STD depth: ", round(np.std(disparity),2)) # 景深的标准差,若偏大说明景深范围较大,可能不适,但同时也是3D感更强的特征 print("STD motion: ", round(np.std(hsv[...,2]),2)) # 运动矢量大小的标准差,若偏大说明各部分运动比较不一致,可能需要结合运动矢量的方向作进一步判断,若存在较复杂的运动形式,则可能不适 print() # 当为demo模式时显示当前帧画面、运动矢量图和景深图 if isDemo: # 显示当前帧 cv2.namedWindow("img", cv2.WINDOW_NORMAL) cv2.imshow('img', img) # 显示当前帧的运动矢量的hsv表示 bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) # hsv转为rgb用于显示 cv2.namedWindow("MotionVector", cv2.WINDOW_NORMAL) cv2.imshow("MotionVector", bgr) # cv2.waitKey(1) # 显示当前帧的景深图 plt.title("DepthMap") plt.imshow(disparity) # 运动矢量的直方图,方便查看数值 # plt.title("MotionVector") # plt.imshow(hsv[...,2]) # plt.show() plt.pause(0.2) input("press to continue") prvs = next # 当前帧覆盖上一帧,继续计算 print("success")